Auditory neuroanatomy: a sound foundation for sound processing
نویسندگان
چکیده
Auditory neuroanatomy has a long and distinguished history. Santiago Ramón y Cajal and Hans Held were pioneers who began the process of identifying the cellular components of the central auditory system. The stature of these early neurohistologists keeps growing today as the field of auditory neuroanatomy moves from the gross identification of brain structure to the analysis of neuronal morphology and function. Auditory neuroanatomy, the topic of this special issue and E-Book, focuses on the study of the morphology of the neurons and nuclei in central auditory system and is now at the interface between cell biology, electrophysiology, and molecular biology. Because hearing is a complex phenomenon, researchers select the animal models that are best suited to investigate particular issues. Thus, the chapters of this E-Book include studies done with mice (normal and transgenic), rats, guinea pigs, cats (normal and congenitally deaf), ferrets, pallid bats, and primates. Moreover, given the morphological complexity of the nervous system, the authors of this volume have applied an arsenal of classical and state-ofthe-art techniques that, alone or in daring combinations, cover the methodological spectrum found in modern neuroscience. Here, electron microscopy, histochemistry, immunocytochemistry, confocal microscopy, anterograde, and retrograde tracttracing, surgical lesions, genetic engineering, molecular biology, in situ hybridization, auditory brainstem recordings, extracellular single-unit recordings, or magnetic resonance imaging are used to provide meaningful answers to pertinent questions about the morphological substrate of normal and abnormal hearing. The E-Book begins with a detailed longitudinal study of the insulin-like growth factor-I (IGF-I) gene on hearing in wild type Igf1+/+ and null Igf1−/− mice (Riquelme et al., 2010). Using a skilled combination of auditory brainstem recordings, in vivo magnetic resonance imaging, histological and immunocytochemical stains, quantitative PCR, and biochemical assays, the authors demonstrate that Igf1−/− mice present a profound deafness at all ages studied. In contrast, Igf1+/+ mice suffer significant agerelated cochlear alterations and hearing loss parallel to a decrease in circulating levels of IGF-1. David K. Ryugo and his coworkers (Baker et al., 2010) investigate postnatal development of the endbulbs of Held (the giant synapses between the fibers of the cochlear nerve and spherical bushy cells of the ventral cochlear nucleus) in the congenitally deaf white cat. The endbulbs are present at birth, but they have an abnormal synaptic ultrastructure despite the seemingly intact cochlear structure. Because these alterations in kittens can be reversed by electric stimulation applied though cochlear implants, Ryugo’s findings underscore the importance of early intervention in congenitally deaf children. Ito and Oliver (2010) use the gene expression of vesicular glutamate transporters to identify glutamatergic neurons that send inputs to the inferior colliculus. Identification of a glutamatergic synapse is often much easier than identifying the neuronal source of the presynaptic terminal, especially when it is in a distant location. Here, the glutamatergic neurons that use the VGLUT2 transporter are identified, and these are the likely sources of the dense VGLUT2 axosomatic terminals on the large GABAergic tectothalamic neurons in the colliculus. The article from Enrique Saldaña’s laboratory (Viñuela et al., 2011) analyzes the relationships between two enigmatic nuclei: the superior paraolivary nucleus (SPON) and the tectal longitudinal column (TLC). Experiments with the bidirectional tracer biotinylated dextran amine (BDA) reveal that the rat SPON sends hitherto unknown projections to the entire ipsilateral TLC and the rostral and caudal portions of the contralateral TLC. They also show that SPONprojects to the deep layers of the superior colliculus and to the periaqueductal gray matter, and that the SPON and the ipsilateral TLC are reciprocally connected. Miguel A. Merchán’s group (Clarkson et al., 2010) employs immunocytochemistry to analyze how the unilateral ablation of the cerebral auditory cortex modifies the sound-induced expression of c-Fos in the inferior colliculus of the rat. Using stereology, morphometry, and densitometry, they determined the number of labeled neurons, and the size and the intensity of the immunostaining of their nuclei at various times after injury (1, 15, 90, and 180 days). The number of immunoreactive neurons decreases for 15 days after lesions, but then there is a progressive partial recovery that suggests a successful long-range repair or adaptation in the IC. Motts and Schofield (2010) use fluorescent retrograde tracers to show that the medial geniculate body of the guinea pig receives direct projections from neurons in the pedunculopontine tegmental nucleus (PPT) and the laterodorsal tegmental nucleus (LDT). These two nuclei are associated with arousal and control of the sleep/wake cycle. By combining retrograde tracers and immunocytochemistry for choline acetyltransferase (ChAT), they further demonstrate that approximately 50% of these neurons are cholinergic. The study headed by Andrew J. King (Bajo et al., 2010) uses neuroanatomical tracers to investigate the projections from
منابع مشابه
Selective deficits in human audition: evidence from lesion studies
The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...
متن کاملSelective deficits in human audition: evidence from lesion studies
The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...
متن کاملFunctional neuroanatomy of spatial sound processing in Alzheimer's disease
Deficits of auditory scene analysis accompany Alzheimer's disease (AD). However, the functional neuroanatomy of spatial sound processing has not been defined in AD. We addressed this using a "sparse" fMRI virtual auditory spatial paradigm in 14 patients with typical AD in relation to 16 healthy age-matched individuals. Sound stimulus sequences discretely varied perceived spatial location and pi...
متن کاملDifferent Profiles of Verbal and Nonverbal Auditory Impairment in Cortical and Subcortical Lesions
A B S T R A C T Introduction:We investigated differential role of cortical and subcortical regions in verbal and non-verbal sound processing in ten patients who were native speakers of Persian with unilateral cortical and/or unilateral and bilateral subcortical lesions and 40 normal speakers as control subjects. Methods: The verbal tasks included monosyllabic, disyllabic dichotic and diotic tas...
متن کاملAtypical vertical sound localization and sound-onset sensitivity in people with autism spectrum disorders.
BACKGROUND Autism spectrum disorders (ASDs) are associated with auditory hyper- or hyposensitivity; atypicalities in central auditory processes, such as speech-processing and selective auditory attention; and neural connectivity deficits. We sought to investigate whether the low-level integrative processes underlying sound localization and spatial discrimination are affected in ASDs. METHODS ...
متن کاملUnderstanding the auditory-fMRI
The neuroanatomy of the auditory system is well established (Brodal, 1998). Input to the brainstem comes through VIII cranial nerve. First station is cochlear nucleus. From the cochlear nucleus, auditory information is split in two. Some nerve fibers going to the ventral cochlear nucleus synapse on their target cells with giant, hand-like terminals. This serves as timing of the signal. The vent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2012